C++ API Reference for Intel® Data Analytics Acceleration Library 2016 Update 4

apriori_batch.cpp

/* file: apriori_batch.cpp */
/*******************************************************************************
* Copyright 2014-2016 Intel Corporation All Rights Reserved.
*
* The source code, information and material ("Material") contained herein is
* owned by Intel Corporation or its suppliers or licensors, and title to such
* Material remains with Intel Corporation or its suppliers or licensors. The
* Material contains proprietary information of Intel or its suppliers and
* licensors. The Material is protected by worldwide copyright laws and treaty
* provisions. No part of the Material may be used, copied, reproduced,
* modified, published, uploaded, posted, transmitted, distributed or disclosed
* in any way without Intel's prior express written permission. No license under
* any patent, copyright or other intellectual property rights in the Material
* is granted to or conferred upon you, either expressly, by implication,
* inducement, estoppel or otherwise. Any license under such intellectual
* property rights must be express and approved by Intel in writing.
*
* Unless otherwise agreed by Intel in writing, you may not remove or alter this
* notice or any other notice embedded in Materials by Intel or Intel's
* suppliers or licensors in any way.
*******************************************************************************/
/*
! Content:
! C++ example of association rules mining
!******************************************************************************/
#include "daal.h"
#include "service.h"
using namespace std;
using namespace daal;
using namespace daal::algorithms;
/* Input data set parameters */
string datasetFileName = "../data/batch/apriori.csv";
/* Apriori algorithm parameters */
const double minSupport = 0.001; /* Minimum support */
const double minConfidence = 0.7; /* Minimum confidence */
int main(int argc, char *argv[])
{
checkArguments(argc, argv, 1, &datasetFileName);
/* Initialize FileDataSource<CSVFeatureManager> to retrieve the input data from a .csv file */
FileDataSource<CSVFeatureManager> dataSource(datasetFileName, DataSource::doAllocateNumericTable,
DataSource::doDictionaryFromContext);
/* Retrieve the data from the input file */
dataSource.loadDataBlock();
/* Create an algorithm to mine association rules using the Apriori method */
association_rules::Batch<> algorithm;
/* Set the input object for the algorithm */
algorithm.input.set(association_rules::data, dataSource.getNumericTable());
/* Set the Apriori algorithm parameters */
algorithm.parameter.minSupport = minSupport;
algorithm.parameter.minConfidence = minConfidence;
/* Find large item sets and construct association rules */
algorithm.compute();
/* Get computed results of the Apriori algorithm */
services::SharedPtr<association_rules::Result> res = algorithm.getResult();
/* Print the large item sets */
printAprioriItemsets(res->get(association_rules::largeItemsets),
res->get(association_rules::largeItemsetsSupport));
/* Print the association rules */
printAprioriRules(res->get(association_rules::antecedentItemsets),
res->get(association_rules::consequentItemsets),
res->get(association_rules::confidence));
return 0;
}