C++ API Reference for Intel® Data Analytics Acceleration Library 2016 Update 4

covariance_csr_online.cpp

/* file: covariance_csr_online.cpp */
/*******************************************************************************
* Copyright 2014-2016 Intel Corporation All Rights Reserved.
*
* The source code, information and material ("Material") contained herein is
* owned by Intel Corporation or its suppliers or licensors, and title to such
* Material remains with Intel Corporation or its suppliers or licensors. The
* Material contains proprietary information of Intel or its suppliers and
* licensors. The Material is protected by worldwide copyright laws and treaty
* provisions. No part of the Material may be used, copied, reproduced,
* modified, published, uploaded, posted, transmitted, distributed or disclosed
* in any way without Intel's prior express written permission. No license under
* any patent, copyright or other intellectual property rights in the Material
* is granted to or conferred upon you, either expressly, by implication,
* inducement, estoppel or otherwise. Any license under such intellectual
* property rights must be express and approved by Intel in writing.
*
* Unless otherwise agreed by Intel in writing, you may not remove or alter this
* notice or any other notice embedded in Materials by Intel or Intel's
* suppliers or licensors in any way.
*******************************************************************************/
/*
! Content:
! C++ example of variance-covariance matrix computation in the online
! processing mode
!******************************************************************************/
#include "daal.h"
#include "service.h"
using namespace std;
using namespace daal;
using namespace daal::algorithms;
typedef float dataFPType; /* Data floating-point type */
typedef double algorithmFPType; /* Algorithm floating-point type */
/* Input data set parameters */
const size_t nBlocks = 4;
const string datasetFileNames[] =
{
"../data/online/covcormoments_csr_1.csv",
"../data/online/covcormoments_csr_2.csv",
"../data/online/covcormoments_csr_3.csv",
"../data/online/covcormoments_csr_4.csv"
};
int main(int argc, char *argv[])
{
checkArguments(argc, argv, 4, &datasetFileNames[0], &datasetFileNames[1], &datasetFileNames[2], &datasetFileNames[3]);
/* Create algorithm objects to compute a variance-covariance matrix in the online processing mode using the default method */
covariance::Online<algorithmFPType, covariance::fastCSR> algorithm;
for(size_t i = 0; i < nBlocks; i++)
{
CSRNumericTable *dataTable = createSparseTable<dataFPType>(datasetFileNames[i]);
/* Set input objects for the algorithm */
algorithm.input.set(covariance::data, services::SharedPtr<CSRNumericTable>(dataTable));
/* Compute partial estimates */
algorithm.compute();
}
/* Finalize the result in the online processing mode */
algorithm.finalizeCompute();
/* Get the computed variance-covariance matrix */
services::SharedPtr<covariance::Result> res = algorithm.getResult();
printNumericTable(res->get(covariance::covariance), "Covariance matrix (upper left square 10*10) :", 10, 10);
printNumericTable(res->get(covariance::mean), "Mean vector:", 1, 10);
return 0;
}