C++ API Reference for Intel® Data Analytics Acceleration Library 2016 Update 4

covariance_dense_distributed.cpp

/* file: covariance_dense_distributed.cpp */
/*******************************************************************************
* Copyright 2014-2016 Intel Corporation All Rights Reserved.
*
* The source code, information and material ("Material") contained herein is
* owned by Intel Corporation or its suppliers or licensors, and title to such
* Material remains with Intel Corporation or its suppliers or licensors. The
* Material contains proprietary information of Intel or its suppliers and
* licensors. The Material is protected by worldwide copyright laws and treaty
* provisions. No part of the Material may be used, copied, reproduced,
* modified, published, uploaded, posted, transmitted, distributed or disclosed
* in any way without Intel's prior express written permission. No license under
* any patent, copyright or other intellectual property rights in the Material
* is granted to or conferred upon you, either expressly, by implication,
* inducement, estoppel or otherwise. Any license under such intellectual
* property rights must be express and approved by Intel in writing.
*
* Unless otherwise agreed by Intel in writing, you may not remove or alter this
* notice or any other notice embedded in Materials by Intel or Intel's
* suppliers or licensors in any way.
*******************************************************************************/
/*
! Content:
! C++ example of dense variance-covariance matrix computation in the
! distributed processing mode
!******************************************************************************/
#include "daal.h"
#include "service.h"
using namespace std;
using namespace daal;
using namespace daal::algorithms;
/* Input data set parameters */
const size_t nBlocks = 4;
const string datasetFileNames[] =
{
"../data/distributed/covcormoments_dense_1.csv",
"../data/distributed/covcormoments_dense_2.csv",
"../data/distributed/covcormoments_dense_3.csv",
"../data/distributed/covcormoments_dense_4.csv"
};
services::SharedPtr<covariance::PartialResult> partialResult[nBlocks];
services::SharedPtr<covariance::Result> result;
void computestep1Local(size_t i);
void computeOnMasterNode();
int main(int argc, char *argv[])
{
checkArguments(argc, argv, 4, &datasetFileNames[0], &datasetFileNames[1], &datasetFileNames[2], &datasetFileNames[3]);
for(size_t i = 0; i < nBlocks; i++)
{
computestep1Local(i);
}
computeOnMasterNode();
printNumericTable(result->get(covariance::covariance), "Covariance matrix:");
printNumericTable(result->get(covariance::mean), "Mean vector:");
return 0;
}
void computestep1Local(size_t block)
{
/* Initialize FileDataSource<CSVFeatureManager> to retrieve the input data from a .csv file */
FileDataSource<CSVFeatureManager> dataSource(datasetFileNames[block], DataSource::doAllocateNumericTable,
DataSource::doDictionaryFromContext);
/* Retrieve the data from the input file */
dataSource.loadDataBlock();
/* Create algorithm objects to compute a dense variance-covariance matrix in the distributed processing mode using the default method */
covariance::Distributed<step1Local> algorithm;
/* Set input objects for the algorithm */
algorithm.input.set(covariance::data, dataSource.getNumericTable());
/* Compute partial estimates on local nodes */
algorithm.compute();
/* Get the computed partial estimates */
partialResult[block] = algorithm.getPartialResult();
}
void computeOnMasterNode()
{
/* Create algorithm objects to compute a dense variance-covariance matrix in the distributed processing mode using the default method */
covariance::Distributed<step2Master> algorithm;
/* Set input objects for the algorithm */
for (size_t i = 0; i < nBlocks; i++)
{
algorithm.input.add(covariance::partialResults, partialResult[i]);
}
/* Compute a partial estimate on the master node from the partial estimates on local nodes */
algorithm.compute();
/* Finalize the result in the distributed processing mode */
algorithm.finalizeCompute();
/* Get the computed dense variance-covariance matrix */
result = algorithm.getResult();
}