C++ API Reference for Intel® Data Analytics Acceleration Library 2016 Update 4

em_gmm_batch.cpp

/* file: em_gmm_batch.cpp */
/*******************************************************************************
* Copyright 2014-2016 Intel Corporation All Rights Reserved.
*
* The source code, information and material ("Material") contained herein is
* owned by Intel Corporation or its suppliers or licensors, and title to such
* Material remains with Intel Corporation or its suppliers or licensors. The
* Material contains proprietary information of Intel or its suppliers and
* licensors. The Material is protected by worldwide copyright laws and treaty
* provisions. No part of the Material may be used, copied, reproduced,
* modified, published, uploaded, posted, transmitted, distributed or disclosed
* in any way without Intel's prior express written permission. No license under
* any patent, copyright or other intellectual property rights in the Material
* is granted to or conferred upon you, either expressly, by implication,
* inducement, estoppel or otherwise. Any license under such intellectual
* property rights must be express and approved by Intel in writing.
*
* Unless otherwise agreed by Intel in writing, you may not remove or alter this
* notice or any other notice embedded in Materials by Intel or Intel's
* suppliers or licensors in any way.
*******************************************************************************/
/*
! Content:
! C++ example of the expectation-maximization (EM) algorithm for the
! Gaussian mixture model (GMM)
!******************************************************************************/
#include "daal.h"
#include "service.h"
using namespace std;
using namespace daal;
using namespace daal::algorithms;
using namespace daal::data_management;
typedef float dataFPType; /* Data floating-point type */
/* Input data set parameters */
const std::string datasetFileName = "../data/batch/em_gmm.csv" ;
const size_t nComponents = 2;
size_t nFeatures;
int main(int argc, char *argv[])
{
checkArguments(argc, argv, 1, &datasetFileName);
/* Initialize FileDataSource<CSVFeatureManager> to retrieve the input data from a .csv file */
FileDataSource<CSVFeatureManager> dataSource(datasetFileName, DataSource::doAllocateNumericTable,
DataSource::doDictionaryFromContext);
nFeatures = dataSource.getNumberOfColumns();
/* Retrieve the data from the input file */
dataSource.loadDataBlock();
/* Create algorithm objects to initialize the EM algorithm for the GMM
* computing the number of components using the default method */
em_gmm::init::Batch<> initAlgorihm(nComponents);
/* Set an input data table for the initialization algorithm */
initAlgorihm.input.set(em_gmm::init::data, dataSource.getNumericTable());
/* Compute initial values for the EM algorithm for the GMM with the default parameters */
initAlgorihm.compute();
services::SharedPtr<em_gmm::init::Result> resultInit = initAlgorihm.getResult();
/* Create algorithm objects for the EM algorithm for the GMM computing the number of components using the default method */
em_gmm::Batch<> algorithm(nComponents);
/* Set an input data table for the algorithm */
algorithm.input.set(em_gmm::data, dataSource.getNumericTable());
algorithm.input.set(em_gmm::inputValues, initAlgorihm.getResult());
/* Compute the results of the EM algorithm for the GMM with the default parameters */
algorithm.compute();
services::SharedPtr<em_gmm::Result> result = algorithm.getResult();
/* Print the results */
printNumericTable(result->get(em_gmm::weights), "Weights");
printNumericTable(result->get(em_gmm::means), "Means");
for(size_t i = 0; i < nComponents; i++)
{
printNumericTable(result->get(em_gmm::covariances, i), "Covariance");
}
return 0;
}