C++ API Reference for Intel® Data Analytics Acceleration Library 2016 Update 4

stump_batch.cpp

/* file: stump_batch.cpp */
/*******************************************************************************
* Copyright 2014-2016 Intel Corporation All Rights Reserved.
*
* The source code, information and material ("Material") contained herein is
* owned by Intel Corporation or its suppliers or licensors, and title to such
* Material remains with Intel Corporation or its suppliers or licensors. The
* Material contains proprietary information of Intel or its suppliers and
* licensors. The Material is protected by worldwide copyright laws and treaty
* provisions. No part of the Material may be used, copied, reproduced,
* modified, published, uploaded, posted, transmitted, distributed or disclosed
* in any way without Intel's prior express written permission. No license under
* any patent, copyright or other intellectual property rights in the Material
* is granted to or conferred upon you, either expressly, by implication,
* inducement, estoppel or otherwise. Any license under such intellectual
* property rights must be express and approved by Intel in writing.
*
* Unless otherwise agreed by Intel in writing, you may not remove or alter this
* notice or any other notice embedded in Materials by Intel or Intel's
* suppliers or licensors in any way.
*******************************************************************************/
/*
! Content:
! C++ example of stump classification.
!
! The program trains the stump model on a supplied training datasetFileName
! and then performs classification of previously unseen data.
!******************************************************************************/
#include "daal.h"
#include "service.h"
using namespace std;
using namespace daal;
using namespace daal::algorithms;
using namespace daal::algorithms::stump;
/* Input data set parameters */
string trainDatasetFileName = "../data/batch/stump_train.csv";
string testDatasetFileName = "../data/batch/stump_test.csv";
const size_t nFeatures = 20;
services::SharedPtr<training::Result> trainingResult;
services::SharedPtr<classifier::prediction::Result> predictionResult;
services::SharedPtr<NumericTable> testGroundTruth;
void trainModel();
void testModel();
void printResults();
int main(int argc, char *argv[])
{
checkArguments(argc, argv, 2, &trainDatasetFileName, &testDatasetFileName);
trainModel();
testModel();
printResults();
return 0;
}
void trainModel()
{
/* Initialize FileDataSource<CSVFeatureManager> to retrieve the input data from a .csv file */
FileDataSource<CSVFeatureManager> trainDataSource(trainDatasetFileName,
DataSource::notAllocateNumericTable,
DataSource::doDictionaryFromContext);
/* Create Numeric Tables for training data and labels */
services::SharedPtr<NumericTable> trainData(new HomogenNumericTable<double>(nFeatures, 0, NumericTable::notAllocate));
services::SharedPtr<NumericTable> trainGroundTruth(new HomogenNumericTable<double>(1, 0, NumericTable::notAllocate));
services::SharedPtr<NumericTable> mergedData(new MergedNumericTable(trainData, trainGroundTruth));
/* Retrieve the data from the input file */
trainDataSource.loadDataBlock(mergedData.get());
/* Create an algorithm object to train the stump model */
training::Batch<> algorithm;
/* Pass a training data set and dependent values to the algorithm */
algorithm.input.set(classifier::training::data, trainData);
algorithm.input.set(classifier::training::labels, trainGroundTruth);
algorithm.compute();
/* Retrieve the algorithm results */
trainingResult = algorithm.getResult();
}
void testModel()
{
/* Initialize FileDataSource<CSVFeatureManager> to retrieve the test data from a .csv file */
FileDataSource<CSVFeatureManager> testDataSource(testDatasetFileName,
DataSource::doAllocateNumericTable,
DataSource::doDictionaryFromContext);
/* Create Numeric Tables for testing data and labels */
services::SharedPtr<NumericTable> testData(new HomogenNumericTable<double>(nFeatures, 0, NumericTable::notAllocate));
testGroundTruth = services::SharedPtr<NumericTable>(new HomogenNumericTable<double>(1, 0, NumericTable::notAllocate));
services::SharedPtr<NumericTable> mergedData(new MergedNumericTable(testData, testGroundTruth));
/* Retrieve the data from input file */
testDataSource.loadDataBlock(mergedData.get());
/* Create an algorithm object to predict values */
prediction::Batch<> algorithm;
/* Pass a testing data set and the trained model to the algorithm */
algorithm.input.set(classifier::prediction::data, testData);
algorithm.input.set(classifier::prediction::model, trainingResult->get(classifier::training::model));
/* Predict values */
algorithm.compute();
/* Retrieve the algorithm results */
predictionResult = algorithm.getResult();
}
void printResults()
{
printNumericTables<int, int>(testGroundTruth,
predictionResult->get(classifier::prediction::prediction),
"Ground truth", "Classification results",
"Stump classification results (first 20 observations):", 20);
}