package com.intel.daal.examples.implicit_als;
import com.intel.daal.algorithms.implicit_als.Model;
import com.intel.daal.algorithms.implicit_als.prediction.ratings.*;
import com.intel.daal.algorithms.implicit_als.training.*;
import com.intel.daal.algorithms.implicit_als.training.init.*;
import com.intel.daal.data_management.data.CSRNumericTable;
import com.intel.daal.data_management.data.NumericTable;
import com.intel.daal.examples.utils.Service;
import com.intel.daal.services.DaalContext;
class ImplicitAlsCSRBatch {
private static long nFactors = 2;
private static Model initialModel;
private static Model trainedModel;
private static CSRNumericTable data;
private static final String trainDatasetFileName = "../data/batch/implicit_als_csr.csv";
private static DaalContext context = new DaalContext();
public static void main(String[] args) throws java.io.FileNotFoundException, java.io.IOException {
initializeModel();
trainModel();
testModel();
context.dispose();
}
private static void initializeModel() throws java.io.FileNotFoundException, java.io.IOException {
data = Service.createSparseTable(context, trainDatasetFileName);
InitBatch initAlgorithm = new InitBatch(context, Double.class, InitMethod.fastCSR);
initAlgorithm.parameter.setNFactors(nFactors);
initAlgorithm.input.set(InitInputId.data, data);
InitResult initResult = initAlgorithm.compute();
initialModel = initResult.get(InitResultId.model);
}
private static void trainModel() throws java.io.FileNotFoundException, java.io.IOException {
TrainingBatch alsTrain = new TrainingBatch(context, Double.class, TrainingMethod.fastCSR);
alsTrain.parameter.setNFactors(nFactors);
alsTrain.input.set(NumericTableInputId.data, data);
alsTrain.input.set(ModelInputId.inputModel, initialModel);
TrainingResult trainingResult = alsTrain.compute();
trainedModel = trainingResult.get(TrainingResultId.model);
}
private static void testModel() {
RatingsBatch algorithm = new RatingsBatch(context, Double.class, RatingsMethod.defaultDense);
algorithm.parameter.setNFactors(nFactors);
algorithm.input.set(RatingsModelInputId.model, trainedModel);
RatingsResult result = algorithm.compute();
NumericTable predictedRatings = result.get(RatingsResultId.prediction);
Service.printNumericTable("Predicted ratings:", predictedRatings);
}
}