Java* API Reference for Intel® Data Analytics Acceleration Library 2016 Update 4

KMeansDenseBatch.java

/* file: KMeansDenseBatch.java */
/*******************************************************************************
* Copyright 2014-2016 Intel Corporation All Rights Reserved.
*
* The source code, information and material ("Material") contained herein is
* owned by Intel Corporation or its suppliers or licensors, and title to such
* Material remains with Intel Corporation or its suppliers or licensors. The
* Material contains proprietary information of Intel or its suppliers and
* licensors. The Material is protected by worldwide copyright laws and treaty
* provisions. No part of the Material may be used, copied, reproduced,
* modified, published, uploaded, posted, transmitted, distributed or disclosed
* in any way without Intel's prior express written permission. No license under
* any patent, copyright or other intellectual property rights in the Material
* is granted to or conferred upon you, either expressly, by implication,
* inducement, estoppel or otherwise. Any license under such intellectual
* property rights must be express and approved by Intel in writing.
*
* Unless otherwise agreed by Intel in writing, you may not remove or alter this
* notice or any other notice embedded in Materials by Intel or Intel's
* suppliers or licensors in any way.
*******************************************************************************/
/*
// Content:
// Java example of dense K-Means clustering in the batch processing mode
*/
package com.intel.daal.examples.kmeans;
import com.intel.daal.algorithms.kmeans.*;
import com.intel.daal.algorithms.kmeans.init.*;
import com.intel.daal.data_management.data.NumericTable;
import com.intel.daal.data_management.data_source.DataSource;
import com.intel.daal.data_management.data_source.FileDataSource;
import com.intel.daal.examples.utils.Service;
import com.intel.daal.services.DaalContext;
class KMeansDenseBatch {
/* Input data set parameters */
private static final String dataset = "../data/batch/kmeans_dense.csv";
private static final int nClusters = 20;
/* K-Means algorithm parameters */
private static final int maxIterations = 5;
private static DaalContext context = new DaalContext();
public static void main(String[] args) throws java.io.FileNotFoundException, java.io.IOException {
/* Retrieve the input data */
FileDataSource dataSource = new FileDataSource(context, dataset,
DataSource.DictionaryCreationFlag.DoDictionaryFromContext,
DataSource.NumericTableAllocationFlag.DoAllocateNumericTable);
dataSource.loadDataBlock();
NumericTable input = dataSource.getNumericTable();
/* Calculate initial clusters for K-Means clustering */
InitBatch init = new InitBatch(context, Double.class, InitMethod.randomDense, nClusters);
init.input.set(InitInputId.data, input);
InitResult initResult = init.compute();
NumericTable inputCentroids = initResult.get(InitResultId.centroids);
/* Create an algorithm for K-Means clustering */
Batch algorithm = new Batch(context, Double.class, Method.lloydDense, nClusters, maxIterations);
/* Set an input object for the algorithm */
algorithm.input.set(InputId.data, input);
algorithm.input.set(InputId.inputCentroids, inputCentroids);
/* Clusterize the data */
Result result = algorithm.compute();
/* Print the results */
Service.printNumericTable("First 20 cluster assignments:", result.get(ResultId.assignments), 20);
Service.printNumericTable("First 10 dimensions of centroids:", result.get(ResultId.centroids), 20, 10);
Service.printNumericTable("Goal function value:", result.get(ResultId.goalFunction));
context.dispose();
}
}