Java* API Reference for Intel® Data Analytics Acceleration Library 2016 Update 4

KernelFunctionLinearDenseBatch.java

/* file: KernelFunctionLinearDenseBatch.java */
/*******************************************************************************
* Copyright 2014-2016 Intel Corporation All Rights Reserved.
*
* The source code, information and material ("Material") contained herein is
* owned by Intel Corporation or its suppliers or licensors, and title to such
* Material remains with Intel Corporation or its suppliers or licensors. The
* Material contains proprietary information of Intel or its suppliers and
* licensors. The Material is protected by worldwide copyright laws and treaty
* provisions. No part of the Material may be used, copied, reproduced,
* modified, published, uploaded, posted, transmitted, distributed or disclosed
* in any way without Intel's prior express written permission. No license under
* any patent, copyright or other intellectual property rights in the Material
* is granted to or conferred upon you, either expressly, by implication,
* inducement, estoppel or otherwise. Any license under such intellectual
* property rights must be express and approved by Intel in writing.
*
* Unless otherwise agreed by Intel in writing, you may not remove or alter this
* notice or any other notice embedded in Materials by Intel or Intel's
* suppliers or licensors in any way.
*******************************************************************************/
/*
// Content:
// Java example of computing a linear kernel function
*/
package com.intel.daal.examples.kernel_function;
import com.intel.daal.algorithms.kernel_function.InputId;
import com.intel.daal.algorithms.kernel_function.ResultId;
import com.intel.daal.data_management.data.NumericTable;
import com.intel.daal.data_management.data_source.DataSource;
import com.intel.daal.data_management.data_source.FileDataSource;
import com.intel.daal.examples.utils.Service;
import com.intel.daal.services.DaalContext;
class KernelFunctionLinearDenseBatch {
/* Input data set parameters */
private static final String leftDatasetFileName = "../data/batch/kernel_function.csv";
private static final String rightDatasetFileName = "../data/batch/kernel_function.csv";
private static final double k = 1.0; /* Linear kernel coefficient k */
private static final double b = 0.0; /* Linear kernel coefficient b */
private static DaalContext context = new DaalContext();
public static void main(String[] args) throws java.io.FileNotFoundException, java.io.IOException {
/* Retrieve the input data */
FileDataSource leftDataSource = new FileDataSource(context, leftDatasetFileName,
DataSource.DictionaryCreationFlag.DoDictionaryFromContext,
DataSource.NumericTableAllocationFlag.DoAllocateNumericTable);
FileDataSource rightDataSource = new FileDataSource(context, rightDatasetFileName,
DataSource.DictionaryCreationFlag.DoDictionaryFromContext,
DataSource.NumericTableAllocationFlag.DoAllocateNumericTable);
leftDataSource.loadDataBlock();
rightDataSource.loadDataBlock();
/* Create an algorithm */
com.intel.daal.algorithms.kernel_function.linear.Batch algorithm = new com.intel.daal.algorithms.kernel_function.linear.Batch(
context, Double.class);
/* Set an input object for the algorithm */
NumericTable inputX = leftDataSource.getNumericTable();
NumericTable inputY = rightDataSource.getNumericTable();
/* Set the kernel algorithm parameter */
algorithm.parameter.setK(k);
algorithm.parameter.setB(b);
algorithm.parameter.setComputationMode(com.intel.daal.algorithms.kernel_function.ComputationMode.matrixMatrix);
/* Set an input data table for the algorithm */
algorithm.input.set(InputId.X, inputX);
algorithm.input.set(InputId.Y, inputY);
/* Compute the linear kernel function */
com.intel.daal.algorithms.kernel_function.linear.Result result = algorithm.compute();
/* Get the computed results */
NumericTable values = result.get(ResultId.values);
/* Print the results */
Service.printNumericTable("Result of kernel function:", values);
context.dispose();
}
}