package com.intel.daal.examples.linear_regression;
import com.intel.daal.algorithms.linear_regression.Model;
import com.intel.daal.algorithms.linear_regression.prediction.*;
import com.intel.daal.algorithms.linear_regression.training.*;
import com.intel.daal.data_management.data.NumericTable;
import com.intel.daal.data_management.data.HomogenNumericTable;
import com.intel.daal.data_management.data.MergedNumericTable;
import com.intel.daal.data_management.data_source.DataSource;
import com.intel.daal.data_management.data_source.FileDataSource;
import com.intel.daal.examples.utils.Service;
import com.intel.daal.services.DaalContext;
class LinearRegressionNormEqBatch {
private static final String trainDatasetFileName = "../data/batch/linear_regression_train.csv";
private static final String testDatasetFileName = "../data/batch/linear_regression_test.csv";
private static final int nFeatures = 10;
private static final int nDependentVariables = 2;
static Model model;
static NumericTable results;
static NumericTable testDependentVariables;
private static DaalContext context = new DaalContext();
public static void main(String[] args) throws java.io.FileNotFoundException, java.io.IOException {
trainModel();
testModel();
printResults();
context.dispose();
}
private static void trainModel() {
FileDataSource trainDataSource = new FileDataSource(context, trainDatasetFileName,
DataSource.DictionaryCreationFlag.DoDictionaryFromContext,
DataSource.NumericTableAllocationFlag.NotAllocateNumericTable);
NumericTable trainData = new HomogenNumericTable(context, Double.class, nFeatures, 0, NumericTable.AllocationFlag.NotAllocate);
NumericTable trainDependentVariables = new HomogenNumericTable(context, Double.class, nDependentVariables, 0,
NumericTable.AllocationFlag.NotAllocate);
MergedNumericTable mergedData = new MergedNumericTable(context);
mergedData.addNumericTable(trainData);
mergedData.addNumericTable(trainDependentVariables);
trainDataSource.loadDataBlock(mergedData);
TrainingBatch linearRegressionTrain = new TrainingBatch(context, Double.class, TrainingMethod.normEqDense);
linearRegressionTrain.input.set(TrainingInputId.data, trainData);
linearRegressionTrain.input.set(TrainingInputId.dependentVariable, trainDependentVariables);
TrainingResult trainingResult = linearRegressionTrain.compute();
model = trainingResult.get(TrainingResultId.model);
}
private static void testModel() {
FileDataSource testDataSource = new FileDataSource(context, testDatasetFileName,
DataSource.DictionaryCreationFlag.DoDictionaryFromContext,
DataSource.NumericTableAllocationFlag.NotAllocateNumericTable);
NumericTable testData = new HomogenNumericTable(context, Double.class, nFeatures, 0, NumericTable.AllocationFlag.NotAllocate);
testDependentVariables = new HomogenNumericTable(context, Double.class, nDependentVariables, 0, NumericTable.AllocationFlag.NotAllocate);
MergedNumericTable mergedData = new MergedNumericTable(context);
mergedData.addNumericTable(testData);
mergedData.addNumericTable(testDependentVariables);
testDataSource.loadDataBlock(mergedData);
PredictionBatch linearRegressionPredict = new PredictionBatch(context, Double.class,
PredictionMethod.defaultDense);
linearRegressionPredict.input.set(PredictionInputId.data, testData);
linearRegressionPredict.input.set(PredictionInputId.model, model);
PredictionResult predictionResult = linearRegressionPredict.compute();
results = predictionResult.get(PredictionResultId.prediction);
}
private static void printResults() {
NumericTable beta = model.getBeta();
NumericTable expected = testDependentVariables;
Service.printNumericTable("Coefficients: ", beta);
Service.printNumericTable("First 10 rows of results (obtained): ", results, 10);
Service.printNumericTable("First 10 rows of results (expected): ", expected, 10);
}
}