package com.intel.daal.examples.boosting.logitboost;
import com.intel.daal.algorithms.classifier.prediction.ModelInputId;
import com.intel.daal.algorithms.classifier.prediction.NumericTableInputId;
import com.intel.daal.algorithms.classifier.prediction.PredictionResult;
import com.intel.daal.algorithms.classifier.prediction.PredictionResultId;
import com.intel.daal.algorithms.classifier.training.InputId;
import com.intel.daal.algorithms.classifier.training.TrainingResultId;
import com.intel.daal.algorithms.logitboost.Model;
import com.intel.daal.algorithms.logitboost.prediction.*;
import com.intel.daal.algorithms.logitboost.training.*;
import com.intel.daal.data_management.data.NumericTable;
import com.intel.daal.data_management.data.HomogenNumericTable;
import com.intel.daal.data_management.data.MergedNumericTable;
import com.intel.daal.data_management.data_source.DataSource;
import com.intel.daal.data_management.data_source.FileDataSource;
import com.intel.daal.examples.utils.Service;
import com.intel.daal.services.DaalContext;
class LogitBoostBatch {
private static final String trainDataset = "../data/batch/logitboost_train.csv";
private static final String testDataset = "../data/batch/logitboost_test.csv";
private static final int nFeatures = 20;
private static final int nClasses = 5;
private static final int maxIterations = 100;
private static final double accuracyThreshold = 0.01;
private static TrainingResult trainingResult;
private static PredictionResult predictionResult;
private static NumericTable testGroundTruth;
private static DaalContext context = new DaalContext();
public static void main(String[] args) throws java.io.FileNotFoundException, java.io.IOException {
trainModel();
testModel();
printResults();
context.dispose();
}
private static void trainModel() {
FileDataSource trainDataSource = new FileDataSource(context, trainDataset,
DataSource.DictionaryCreationFlag.DoDictionaryFromContext,
DataSource.NumericTableAllocationFlag.NotAllocateNumericTable);
NumericTable trainData = new HomogenNumericTable(context, Double.class, nFeatures, 0, NumericTable.AllocationFlag.NotAllocate);
NumericTable trainGroundTruth = new HomogenNumericTable(context, Double.class, 1, 0, NumericTable.AllocationFlag.NotAllocate);
MergedNumericTable mergedData = new MergedNumericTable(context);
mergedData.addNumericTable(trainData);
mergedData.addNumericTable(trainGroundTruth);
trainDataSource.loadDataBlock(mergedData);
TrainingBatch algorithm = new TrainingBatch(context, Double.class, TrainingMethod.friedman, nClasses);
algorithm.parameter.setMaxIterations(maxIterations);
algorithm.parameter.setAccuracyThreshold(accuracyThreshold);
algorithm.input.set(InputId.data, trainData);
algorithm.input.set(InputId.labels, trainGroundTruth);
trainingResult = algorithm.compute();
}
private static void testModel() {
FileDataSource testDataSource = new FileDataSource(context, testDataset,
DataSource.DictionaryCreationFlag.DoDictionaryFromContext,
DataSource.NumericTableAllocationFlag.NotAllocateNumericTable);
NumericTable testData = new HomogenNumericTable(context, Double.class, nFeatures, 0, NumericTable.AllocationFlag.NotAllocate);
testGroundTruth = new HomogenNumericTable(context, Double.class, 1, 0, NumericTable.AllocationFlag.NotAllocate);
MergedNumericTable mergedData = new MergedNumericTable(context);
mergedData.addNumericTable(testData);
mergedData.addNumericTable(testGroundTruth);
testDataSource.loadDataBlock(mergedData);
PredictionBatch algorithm = new PredictionBatch(context, Double.class, PredictionMethod.defaultDense, nClasses);
Model model = trainingResult.get(TrainingResultId.model);
algorithm.input.set(NumericTableInputId.data, testData);
algorithm.input.set(ModelInputId.model, model);
predictionResult = algorithm.compute();
}
private static void printResults() {
NumericTable predictionResults = predictionResult.get(PredictionResultId.prediction);
Service.printClassificationResult(testGroundTruth, predictionResults, "Ground truth", "Classification results",
"LogitBoost classification results (first 20 observations):", 20);
}
}