package com.intel.daal.examples.naive_bayes;
import com.intel.daal.algorithms.classifier.prediction.ModelInputId;
import com.intel.daal.algorithms.classifier.prediction.NumericTableInputId;
import com.intel.daal.algorithms.classifier.prediction.PredictionResult;
import com.intel.daal.algorithms.classifier.prediction.PredictionResultId;
import com.intel.daal.algorithms.classifier.training.InputId;
import com.intel.daal.algorithms.classifier.training.TrainingResultId;
import com.intel.daal.algorithms.multinomial_naive_bayes.Model;
import com.intel.daal.algorithms.multinomial_naive_bayes.prediction.*;
import com.intel.daal.algorithms.multinomial_naive_bayes.training.*;
import com.intel.daal.data_management.data.NumericTable;
import com.intel.daal.data_management.data.CSRNumericTable;
import com.intel.daal.data_management.data_source.DataSource;
import com.intel.daal.data_management.data_source.FileDataSource;
import com.intel.daal.examples.utils.Service;
import com.intel.daal.services.DaalContext;
class MultinomialNaiveBayesCSROnline {
private static final String[] trainGroundTruthFileNames = { "../data/online/naivebayes_train_labels_1.csv",
"../data/online/naivebayes_train_labels_2.csv", "../data/online/naivebayes_train_labels_3.csv",
"../data/online/naivebayes_train_labels_4.csv" };
private static final String[] trainDatasetFileNames = { "../data/online/naivebayes_train_csr_1.csv",
"../data/online/naivebayes_train_csr_2.csv", "../data/online/naivebayes_train_csr_3.csv",
"../data/online/naivebayes_train_csr_4.csv" };
private static final String testDatasetFileName = "../data/online/naivebayes_test_csr.csv";
private static final String testGroundTruthFileName = "../data/online/naivebayes_test_labels.csv";
private static final int nTrainObservations = 8000;
private static final int nTestObservations = 2000;
private static final long nClasses = 20;
private static final int nBlocks = 4;
private static TrainingResult trainingResult;
private static PredictionResult predictionResult;
private static DaalContext context = new DaalContext();
public static void main(String[] args) throws java.io.FileNotFoundException, java.io.IOException {
trainModel();
testModel();
printResults();
context.dispose();
}
private static void trainModel() throws java.io.FileNotFoundException, java.io.IOException {
TrainingOnline algorithm = new TrainingOnline(context, Double.class, TrainingMethod.fastCSR, nClasses);
for (int node = 0; node < nBlocks; node++) {
FileDataSource trainGroundTruthSource = new FileDataSource(context, trainGroundTruthFileNames[node],
DataSource.DictionaryCreationFlag.DoDictionaryFromContext,
DataSource.NumericTableAllocationFlag.DoAllocateNumericTable);
CSRNumericTable trainData = Service.createSparseTable(context, trainDatasetFileNames[node]);
NumericTable labels = trainGroundTruthSource.getNumericTable();
trainGroundTruthSource.loadDataBlock(nTrainObservations);
algorithm.input.set(InputId.data, trainData);
algorithm.input.set(InputId.labels, labels);
algorithm.compute();
}
trainingResult = algorithm.finalizeCompute();
}
private static void testModel() throws java.io.FileNotFoundException, java.io.IOException {
PredictionBatch algorithm = new PredictionBatch(context, Double.class, PredictionMethod.fastCSR, nClasses);
CSRNumericTable testData = Service.createSparseTable(context, testDatasetFileName);
algorithm.input.set(NumericTableInputId.data, testData);
Model model = trainingResult.get(TrainingResultId.model);
algorithm.input.set(ModelInputId.model, model);
predictionResult = algorithm.compute();
}
private static void printResults() throws java.io.FileNotFoundException, java.io.IOException {
FileDataSource testGroundTruth = new FileDataSource(context, testGroundTruthFileName,
DataSource.DictionaryCreationFlag.DoDictionaryFromContext,
DataSource.NumericTableAllocationFlag.DoAllocateNumericTable);
testGroundTruth.loadDataBlock(nTestObservations);
NumericTable expected = testGroundTruth.getNumericTable();
NumericTable prediction = predictionResult.get(PredictionResultId.prediction);
Service.printClassificationResult(expected, prediction, "Ground truth", "Classification results",
"NaiveBayes classification results (first 20 observations):", 20);
}
}