Java* API Reference for Intel® Data Analytics Acceleration Library 2016 Update 4

MultinomialNaiveBayesDenseDistributed.java

/* file: MultinomialNaiveBayesDenseDistributed.java */
/*******************************************************************************
* Copyright 2014-2016 Intel Corporation All Rights Reserved.
*
* The source code, information and material ("Material") contained herein is
* owned by Intel Corporation or its suppliers or licensors, and title to such
* Material remains with Intel Corporation or its suppliers or licensors. The
* Material contains proprietary information of Intel or its suppliers and
* licensors. The Material is protected by worldwide copyright laws and treaty
* provisions. No part of the Material may be used, copied, reproduced,
* modified, published, uploaded, posted, transmitted, distributed or disclosed
* in any way without Intel's prior express written permission. No license under
* any patent, copyright or other intellectual property rights in the Material
* is granted to or conferred upon you, either expressly, by implication,
* inducement, estoppel or otherwise. Any license under such intellectual
* property rights must be express and approved by Intel in writing.
*
* Unless otherwise agreed by Intel in writing, you may not remove or alter this
* notice or any other notice embedded in Materials by Intel or Intel's
* suppliers or licensors in any way.
*******************************************************************************/
/*
// Content:
// Java example of Naive Bayes classification in the distributed processing
// mode.
//
// The program trains the Naive Bayes model on a supplied training data set
// in dense format and then performs classification of previously unseen
// data.
*/
package com.intel.daal.examples.naive_bayes;
import com.intel.daal.algorithms.classifier.prediction.ModelInputId;
import com.intel.daal.algorithms.classifier.prediction.NumericTableInputId;
import com.intel.daal.algorithms.classifier.prediction.PredictionResult;
import com.intel.daal.algorithms.classifier.prediction.PredictionResultId;
import com.intel.daal.algorithms.classifier.training.InputId;
import com.intel.daal.algorithms.classifier.training.TrainingDistributedInputId;
import com.intel.daal.algorithms.classifier.training.TrainingResultId;
import com.intel.daal.algorithms.multinomial_naive_bayes.Model;
import com.intel.daal.algorithms.multinomial_naive_bayes.prediction.*;
import com.intel.daal.algorithms.multinomial_naive_bayes.training.*;
import com.intel.daal.data_management.data.NumericTable;
import com.intel.daal.data_management.data.HomogenNumericTable;
import com.intel.daal.data_management.data.MergedNumericTable;
import com.intel.daal.data_management.data_source.DataSource;
import com.intel.daal.data_management.data_source.FileDataSource;
import com.intel.daal.examples.utils.Service;
import com.intel.daal.services.DaalContext;
class MultinomialNaiveBayesDenseDistributed {
/* Input data set parameters */
private static final String[] trainDatasetFileNames = { "../data/distributed/naivebayes_train_dense_1.csv",
"../data/distributed/naivebayes_train_dense_2.csv", "../data/distributed/naivebayes_train_dense_3.csv",
"../data/distributed/naivebayes_train_dense_4.csv" };
private static final String testDatasetFileName = "../data/distributed/naivebayes_test_dense.csv";
private static final int nFeatures = 20;
private static final int nBlocks = 4;
private static final long nClasses = 20;
/* Parameters for the Naive Bayes algorithm */
private static TrainingResult trainingResult;
private static PredictionResult predictionResult;
private static NumericTable testGroundTruth;
private static DaalContext context = new DaalContext();
public static void main(String[] args) throws java.io.FileNotFoundException, java.io.IOException {
trainModel();
testModel();
printResults();
context.dispose();
}
private static void trainModel() throws java.io.FileNotFoundException, java.io.IOException {
TrainingPartialResult[] pres = new TrainingPartialResult[nBlocks];
for (int node = 0; node < nBlocks; node++) {
DaalContext localContext = new DaalContext();
/* Initialize FileDataSource to retrieve the input data from a .csv file */
FileDataSource trainDataSource = new FileDataSource(localContext, trainDatasetFileNames[node],
DataSource.DictionaryCreationFlag.DoDictionaryFromContext,
DataSource.NumericTableAllocationFlag.NotAllocateNumericTable);
/* Create Numeric Tables for training data and labels */
NumericTable trainData = new HomogenNumericTable(localContext, Double.class, nFeatures, 0, NumericTable.AllocationFlag.NotAllocate);
NumericTable trainGroundTruth = new HomogenNumericTable(localContext, Double.class, 1, 0, NumericTable.AllocationFlag.NotAllocate);
MergedNumericTable mergedData = new MergedNumericTable(localContext);
mergedData.addNumericTable(trainData);
mergedData.addNumericTable(trainGroundTruth);
/* Retrieve the data from an input file */
trainDataSource.loadDataBlock(mergedData);
/* Create algorithm objects to train the Naive Bayes model */
TrainingDistributedStep1Local algorithm = new TrainingDistributedStep1Local(localContext, Double.class,
TrainingMethod.defaultDense, nClasses);
/* Set the input data */
algorithm.input.set(InputId.data, trainData);
algorithm.input.set(InputId.labels, trainGroundTruth);
/* Build a partial Naive Bayes model */
pres[node] = algorithm.compute();
pres[node].changeContext(context);
localContext.dispose();
}
/* Build the final Naive Bayes model on the master node*/
TrainingDistributedStep2Master algorithm = new TrainingDistributedStep2Master(context, Double.class,
TrainingMethod.defaultDense, nClasses);
/* Set partial Naive Bayes models built on local nodes */
for (int node = 0; node < nBlocks; node++) {
algorithm.input.add(TrainingDistributedInputId.partialModels, pres[node]);
}
/* Build the final Naive Bayes model */
algorithm.compute();
trainingResult = algorithm.finalizeCompute();
}
private static void testModel() throws java.io.FileNotFoundException, java.io.IOException {
FileDataSource testDataSource = new FileDataSource(context, testDatasetFileName,
DataSource.DictionaryCreationFlag.DoDictionaryFromContext,
DataSource.NumericTableAllocationFlag.NotAllocateNumericTable);
/* Create Numeric Tables for testing data and labels */
NumericTable testData = new HomogenNumericTable(context, Double.class, nFeatures, 0, NumericTable.AllocationFlag.NotAllocate);
testGroundTruth = new HomogenNumericTable(context, Double.class, 1, 0, NumericTable.AllocationFlag.NotAllocate);
MergedNumericTable mergedData = new MergedNumericTable(context);
mergedData.addNumericTable(testData);
mergedData.addNumericTable(testGroundTruth);
/* Retrieve the data from an input file */
testDataSource.loadDataBlock(mergedData);
/* Create algorithm objects to predict Naive Bayes values with the defaultDense method */
PredictionBatch algorithm = new PredictionBatch(context, Double.class, PredictionMethod.defaultDense, nClasses);
/* Pass a testing data set and the trained model to the algorithm */
algorithm.input.set(NumericTableInputId.data, testData);
Model model = trainingResult.get(TrainingResultId.model);
algorithm.input.set(ModelInputId.model, model);
/* Compute the prediction results */
predictionResult = algorithm.compute();
}
private static void printResults() throws java.io.FileNotFoundException, java.io.IOException {
NumericTable expected = testGroundTruth;
NumericTable prediction = predictionResult.get(PredictionResultId.prediction);
Service.printClassificationResult(expected, prediction, "Ground truth", "Classification results",
"NaiveBayes classification results (first 20 observations):", 20);
}
}