Java* API Reference for Intel® Data Analytics Acceleration Library 2016 Update 4

OutlierDetectionUnivariateBatch.java

/* file: OutlierDetectionUnivariateBatch.java */
/*******************************************************************************
* Copyright 2014-2016 Intel Corporation All Rights Reserved.
*
* The source code, information and material ("Material") contained herein is
* owned by Intel Corporation or its suppliers or licensors, and title to such
* Material remains with Intel Corporation or its suppliers or licensors. The
* Material contains proprietary information of Intel or its suppliers and
* licensors. The Material is protected by worldwide copyright laws and treaty
* provisions. No part of the Material may be used, copied, reproduced,
* modified, published, uploaded, posted, transmitted, distributed or disclosed
* in any way without Intel's prior express written permission. No license under
* any patent, copyright or other intellectual property rights in the Material
* is granted to or conferred upon you, either expressly, by implication,
* inducement, estoppel or otherwise. Any license under such intellectual
* property rights must be express and approved by Intel in writing.
*
* Unless otherwise agreed by Intel in writing, you may not remove or alter this
* notice or any other notice embedded in Materials by Intel or Intel's
* suppliers or licensors in any way.
*******************************************************************************/
/*
// Content:
// Java example of univariate outlier detection
*/
package com.intel.daal.examples.outlier_detection;
import com.intel.daal.algorithms.univariate_outlier_detection.Batch;
import com.intel.daal.algorithms.univariate_outlier_detection.InputId;
import com.intel.daal.algorithms.univariate_outlier_detection.Method;
import com.intel.daal.algorithms.univariate_outlier_detection.Result;
import com.intel.daal.algorithms.univariate_outlier_detection.ResultId;
import com.intel.daal.data_management.data.NumericTable;
import com.intel.daal.data_management.data_source.DataSource;
import com.intel.daal.data_management.data_source.FileDataSource;
import com.intel.daal.examples.utils.Service;
import com.intel.daal.services.DaalContext;
class OutlierDetectionUnivariateBatch {
/* Input data set parameters */
private static final String datasetFileName = "../data/batch/outlierdetection.csv";
private static DaalContext context = new DaalContext();
public static void main(String[] args) throws java.io.FileNotFoundException, java.io.IOException {
FileDataSource dataSource = new FileDataSource(context, datasetFileName,
DataSource.DictionaryCreationFlag.DoDictionaryFromContext,
DataSource.NumericTableAllocationFlag.DoAllocateNumericTable);
/* Retrieve the data from the input file */
dataSource.loadDataBlock();
/* Create an algorithm to detect outliers using the default method */
Batch alg = new Batch(context, Double.class, Method.defaultDense);
NumericTable data = dataSource.getNumericTable();
alg.input.set(InputId.data, data);
/* Detect outliers */
Result result = alg.compute();
NumericTable weights = result.get(ResultId.weights);
Service.printNumericTable("Input data", data);
Service.printNumericTable("Univariate outlier detection result:", weights);
context.dispose();
}
}