package com.intel.daal.examples.pca;
import com.intel.daal.algorithms.pca.Batch;
import com.intel.daal.algorithms.pca.InputId;
import com.intel.daal.algorithms.pca.Method;
import com.intel.daal.algorithms.pca.Result;
import com.intel.daal.algorithms.pca.ResultId;
import com.intel.daal.data_management.data.NumericTable;
import com.intel.daal.data_management.data_source.DataSource;
import com.intel.daal.data_management.data_source.FileDataSource;
import com.intel.daal.examples.utils.Service;
import com.intel.daal.services.DaalContext;
class PCASVDDenseBatch {
private static final String dataset = "../data/batch/pca_normalized.csv";
private static DaalContext context = new DaalContext();
public static void main(String[] args) throws java.io.FileNotFoundException, java.io.IOException {
FileDataSource dataSource = new FileDataSource(context, dataset,
DataSource.DictionaryCreationFlag.DoDictionaryFromContext,
DataSource.NumericTableAllocationFlag.DoAllocateNumericTable);
dataSource.loadDataBlock();
Batch pcaAlgorithm = new Batch(context, Double.class, Method.svdDense);
NumericTable data = dataSource.getNumericTable();
pcaAlgorithm.input.set(InputId.data, data);
Result res = pcaAlgorithm.compute();
NumericTable eigenValues = res.get(ResultId.eigenValues);
NumericTable eigenVectors = res.get(ResultId.eigenVectors);
Service.printNumericTable("Eigenvalues:", eigenValues);
Service.printNumericTable("Eigenvectors:", eigenVectors);
context.dispose();
}
}