package com.intel.daal.examples.svm;
import com.intel.daal.algorithms.classifier.prediction.ModelInputId;
import com.intel.daal.algorithms.classifier.prediction.NumericTableInputId;
import com.intel.daal.algorithms.classifier.prediction.PredictionResult;
import com.intel.daal.algorithms.classifier.prediction.PredictionResultId;
import com.intel.daal.algorithms.classifier.training.InputId;
import com.intel.daal.algorithms.classifier.training.TrainingResultId;
import com.intel.daal.algorithms.multi_class_classifier.Model;
import com.intel.daal.algorithms.multi_class_classifier.prediction.*;
import com.intel.daal.algorithms.multi_class_classifier.training.*;
import com.intel.daal.data_management.data.NumericTable;
import com.intel.daal.data_management.data.HomogenNumericTable;
import com.intel.daal.data_management.data.MergedNumericTable;
import com.intel.daal.data_management.data_source.DataSource;
import com.intel.daal.data_management.data_source.FileDataSource;
import com.intel.daal.examples.utils.Service;
import com.intel.daal.services.DaalContext;
class SVMMultiClassCSRBatch {
private static final String trainDatasetFileName = "../data/batch/svm_multi_class_train_csr.csv";
private static final String trainGroundTruthFileName = "../data/batch/svm_multi_class_train_labels.csv";
private static final String testDatasetFileName = "../data/batch/svm_multi_class_test_csr.csv";
private static final String testGroundTruthFileName = "../data/batch/svm_multi_class_test_labels.csv";
private static final int nClasses = 5;
private static TrainingResult trainingResult;
private static PredictionResult predictionResult;
private static com.intel.daal.algorithms.svm.training.TrainingBatch twoClassTraining;
private static com.intel.daal.algorithms.svm.prediction.PredictionBatch twoClassPrediction;
private static DaalContext context = new DaalContext();
private static com.intel.daal.algorithms.kernel_function.linear.Batch kernel =
new com.intel.daal.algorithms.kernel_function.linear.Batch(
context, Double.class, com.intel.daal.algorithms.kernel_function.linear.Method.fastCSR);
public static void main(String[] args) throws java.io.FileNotFoundException, java.io.IOException {
trainModel();
testModel();
printResults();
context.dispose();
}
private static void trainModel() throws java.io.IOException {
twoClassTraining = new com.intel.daal.algorithms.svm.training.TrainingBatch(
context, Double.class, com.intel.daal.algorithms.svm.training.TrainingMethod.boser);
twoClassTraining.parameter.setKernel(kernel);
twoClassPrediction = new com.intel.daal.algorithms.svm.prediction.PredictionBatch(
context, Double.class, com.intel.daal.algorithms.svm.prediction.PredictionMethod.defaultDense);
twoClassPrediction.parameter.setKernel(kernel);
FileDataSource trainGroundTruthSource = new FileDataSource(context, trainGroundTruthFileName,
DataSource.DictionaryCreationFlag.DoDictionaryFromContext,
DataSource.NumericTableAllocationFlag.DoAllocateNumericTable);
NumericTable trainData = Service.createSparseTable(context, trainDatasetFileName);
trainGroundTruthSource.loadDataBlock();
TrainingBatch algorithm = new TrainingBatch(context, Double.class, TrainingMethod.oneAgainstOne);
algorithm.parameter.setNClasses(nClasses);
algorithm.parameter.setTraining(twoClassTraining);
algorithm.parameter.setPrediction(twoClassPrediction);
algorithm.input.set(InputId.data, trainData);
algorithm.input.set(InputId.labels, trainGroundTruthSource.getNumericTable());
trainingResult = algorithm.compute();
}
private static void testModel() throws java.io.IOException {
NumericTable testData = Service.createSparseTable(context, testDatasetFileName);
PredictionBatch algorithm = new PredictionBatch(context, Double.class, PredictionMethod.multiClassClassifierWu);
algorithm.parameter.setNClasses(nClasses);
algorithm.parameter.setTraining(twoClassTraining);
algorithm.parameter.setPrediction(twoClassPrediction);
Model model = trainingResult.get(TrainingResultId.model);
algorithm.input.set(NumericTableInputId.data, testData);
algorithm.input.set(ModelInputId.model, model);
predictionResult = algorithm.compute();
}
private static void printResults() {
FileDataSource testGroundTruthSource = new FileDataSource(context, testGroundTruthFileName,
DataSource.DictionaryCreationFlag.DoDictionaryFromContext,
DataSource.NumericTableAllocationFlag.DoAllocateNumericTable);
testGroundTruthSource.loadDataBlock();
NumericTable testGroundTruth = testGroundTruthSource.getNumericTable();
NumericTable predictionResults = predictionResult.get(PredictionResultId.prediction);
Service.printClassificationResult(testGroundTruth, predictionResults, "Ground truth", "Classification results",
"SVM multiclass classification results (first 20 observations):", 20);
}
}