Java* API Reference for Intel® Data Analytics Acceleration Library 2016 Update 4

SVMMulticlassQualityMetricSetBatchExample.java

/* file: SVMMulticlassQualityMetricSetBatchExample.java */
/*******************************************************************************
* Copyright 2014-2016 Intel Corporation All Rights Reserved.
*
* The source code, information and material ("Material") contained herein is
* owned by Intel Corporation or its suppliers or licensors, and title to such
* Material remains with Intel Corporation or its suppliers or licensors. The
* Material contains proprietary information of Intel or its suppliers and
* licensors. The Material is protected by worldwide copyright laws and treaty
* provisions. No part of the Material may be used, copied, reproduced,
* modified, published, uploaded, posted, transmitted, distributed or disclosed
* in any way without Intel's prior express written permission. No license under
* any patent, copyright or other intellectual property rights in the Material
* is granted to or conferred upon you, either expressly, by implication,
* inducement, estoppel or otherwise. Any license under such intellectual
* property rights must be express and approved by Intel in writing.
*
* Unless otherwise agreed by Intel in writing, you may not remove or alter this
* notice or any other notice embedded in Materials by Intel or Intel's
* suppliers or licensors in any way.
*******************************************************************************/
/*
// Content:
// Java example of multi-class support vector machine (SVM) quality metrics
*/
package com.intel.daal.examples.quality_metrics;
import java.nio.DoubleBuffer;
import com.intel.daal.algorithms.classifier.prediction.ModelInputId;
import com.intel.daal.algorithms.classifier.prediction.NumericTableInputId;
import com.intel.daal.algorithms.classifier.prediction.PredictionResult;
import com.intel.daal.algorithms.classifier.prediction.PredictionResultId;
import com.intel.daal.algorithms.classifier.quality_metric.multi_class_confusion_matrix.*;
import com.intel.daal.algorithms.classifier.training.InputId;
import com.intel.daal.algorithms.classifier.training.TrainingResultId;
import com.intel.daal.algorithms.multi_class_classifier.Model;
import com.intel.daal.algorithms.multi_class_classifier.prediction.*;
import com.intel.daal.algorithms.multi_class_classifier.quality_metric_set.*;
import com.intel.daal.algorithms.multi_class_classifier.training.*;
import com.intel.daal.data_management.data.NumericTable;
import com.intel.daal.data_management.data.HomogenNumericTable;
import com.intel.daal.data_management.data.MergedNumericTable;
import com.intel.daal.data_management.data_source.DataSource;
import com.intel.daal.data_management.data_source.FileDataSource;
import com.intel.daal.examples.utils.Service;
import com.intel.daal.services.DaalContext;
class SVMMulticlassQualityMetricSetBatchExample {
/* Input data set parameters */
private static final String trainDatasetFileName = "../data/batch/svm_multi_class_train_dense.csv";
private static final String testDatasetFileName = "../data/batch/svm_multi_class_test_dense.csv";
private static final int nFeatures = 20;
private static final int nClasses = 5;
private static TrainingResult trainingResult;
private static PredictionResult predictionResult;
private static ResultCollection qualityMetricSetResult;
private static NumericTable groundTruthLabels;
private static NumericTable predictedLabels;
private static DaalContext context = new DaalContext();
public static void main(String[] args) throws java.io.FileNotFoundException, java.io.IOException {
trainModel();
testModel();
testModelQuality();
printResults();
context.dispose();
}
private static void trainModel() {
/* Retrieve the data from input data sets */
com.intel.daal.algorithms.svm.training.TrainingBatch training = new com.intel.daal.algorithms.svm.training.TrainingBatch(
context, Double.class, com.intel.daal.algorithms.svm.training.TrainingMethod.boser);
com.intel.daal.algorithms.svm.prediction.PredictionBatch prediction = new com.intel.daal.algorithms.svm.prediction.PredictionBatch(
context, Double.class, com.intel.daal.algorithms.svm.prediction.PredictionMethod.defaultDense);
/* Retrieve the data from input data sets */
FileDataSource trainDataSource = new FileDataSource(context, trainDatasetFileName,
DataSource.DictionaryCreationFlag.DoDictionaryFromContext,
DataSource.NumericTableAllocationFlag.NotAllocateNumericTable);
/* Create Numeric Tables for training data and labels */
NumericTable trainData = new HomogenNumericTable(context, Double.class, nFeatures, 0, NumericTable.AllocationFlag.NotAllocate);
NumericTable trainGroundTruth = new HomogenNumericTable(context, Double.class, 1, 0, NumericTable.AllocationFlag.NotAllocate);
MergedNumericTable mergedData = new MergedNumericTable(context);
mergedData.addNumericTable(trainData);
mergedData.addNumericTable(trainGroundTruth);
/* Retrieve the data from an input file */
trainDataSource.loadDataBlock(mergedData);
/* Create algorithm objects to train the multi-class SVM model */
TrainingBatch algorithm = new TrainingBatch(context, Double.class, TrainingMethod.oneAgainstOne);
/* Set parameters for the multi-class SVM algorithm */
algorithm.parameter.setNClasses(nClasses);
algorithm.parameter.setTraining(training);
algorithm.parameter.setPrediction(prediction);
/* Pass a training data set and dependent values to the algorithm */
algorithm.input.set(InputId.data, trainData);
algorithm.input.set(InputId.labels, trainGroundTruth);
/* Train the multi-class SVM model */
trainingResult = algorithm.compute();
}
private static void testModel() {
com.intel.daal.algorithms.svm.training.TrainingBatch training = new com.intel.daal.algorithms.svm.training.TrainingBatch(
context, Double.class, com.intel.daal.algorithms.svm.training.TrainingMethod.boser);
com.intel.daal.algorithms.svm.prediction.PredictionBatch prediction = new com.intel.daal.algorithms.svm.prediction.PredictionBatch(
context, Double.class, com.intel.daal.algorithms.svm.prediction.PredictionMethod.defaultDense);
FileDataSource testDataSource = new FileDataSource(context, testDatasetFileName,
DataSource.DictionaryCreationFlag.DoDictionaryFromContext,
DataSource.NumericTableAllocationFlag.NotAllocateNumericTable);
/* Create Numeric Tables for testing data and labels */
NumericTable testData = new HomogenNumericTable(context, Double.class, nFeatures, 0, NumericTable.AllocationFlag.NotAllocate);
groundTruthLabels = new HomogenNumericTable(context, Double.class, 1, 0, NumericTable.AllocationFlag.NotAllocate);
MergedNumericTable mergedData = new MergedNumericTable(context);
mergedData.addNumericTable(testData);
mergedData.addNumericTable(groundTruthLabels);
/* Retrieve the data from an input file */
testDataSource.loadDataBlock(mergedData);
/* Create algorithm objects to predict multi-class SVM values with the defaultDense method */
PredictionBatch algorithm = new PredictionBatch(context, Double.class, PredictionMethod.multiClassClassifierWu);
algorithm.parameter.setNClasses(nClasses);
algorithm.parameter.setTraining(training);
algorithm.parameter.setPrediction(prediction);
Model model = trainingResult.get(TrainingResultId.model);
/* Pass a testing data set and the trained model to the algorithm */
algorithm.input.set(NumericTableInputId.data, testData);
algorithm.input.set(ModelInputId.model, model);
/* Compute the prediction results */
predictionResult = algorithm.compute();
}
private static void testModelQuality() {
/* Retrieve predicted labels */
predictedLabels = predictionResult.get(PredictionResultId.prediction);
/* Create a quality metric set object to compute quality metrics of the SVM algorithm */
QualityMetricSetBatch quality_metric_set = new QualityMetricSetBatch(context, nClasses);
MultiClassConfusionMatrixInput input = quality_metric_set.getInputDataCollection()
.getInput(QualityMetricId.confusionMatrix);
input.set(MultiClassConfusionMatrixInputId.predictedLabels, predictedLabels);
input.set(MultiClassConfusionMatrixInputId.groundTruthLabels, groundTruthLabels);
/* Compute quality metrics */
qualityMetricSetResult = quality_metric_set.compute();
}
private static void printResults() {
/* Print the classification results */
Service.printClassificationResult(groundTruthLabels, predictedLabels, "Ground truth", "Classification results",
"Multi-class SVM classification results (first 20 observations):", 20);
/* Print the quality metrics */
MultiClassConfusionMatrixResult qualityMetricResult = qualityMetricSetResult
.getResult(QualityMetricId.confusionMatrix);
NumericTable confusionMatrix = qualityMetricResult.get(MultiClassConfusionMatrixResultId.confusionMatrix);
NumericTable multiClassMetrics = qualityMetricResult.get(MultiClassConfusionMatrixResultId.multiClassMetrics);
Service.printNumericTable("Confusion matrix:", confusionMatrix);
DoubleBuffer qualityMetricsData = DoubleBuffer
.allocate((int) (multiClassMetrics.getNumberOfColumns() * multiClassMetrics.getNumberOfRows()));
qualityMetricsData = multiClassMetrics.getBlockOfRows(0, multiClassMetrics.getNumberOfRows(),
qualityMetricsData);
System.out
.println("Average accuracy: " + qualityMetricsData.get(MultiClassMetricId.averageAccuracy.getValue()));
System.out.println("Error rate: " + qualityMetricsData.get(MultiClassMetricId.errorRate.getValue()));
System.out.println("Micro precision: " + qualityMetricsData.get(MultiClassMetricId.microPrecision.getValue()));
System.out.println("Micro recall: " + qualityMetricsData.get(MultiClassMetricId.microRecall.getValue()));
System.out.println("Micro F-score: " + qualityMetricsData.get(MultiClassMetricId.microFscore.getValue()));
System.out.println("Macro precision: " + qualityMetricsData.get(MultiClassMetricId.macroPrecision.getValue()));
System.out.println("Macro recall: " + qualityMetricsData.get(MultiClassMetricId.macroRecall.getValue()));
System.out.println("Macro F-score: " + qualityMetricsData.get(MultiClassMetricId.macroFscore.getValue()));
}
}