package com.intel.daal.examples.quality_metrics;
import java.nio.DoubleBuffer;
import com.intel.daal.algorithms.classifier.prediction.ModelInputId;
import com.intel.daal.algorithms.classifier.prediction.NumericTableInputId;
import com.intel.daal.algorithms.classifier.prediction.PredictionResult;
import com.intel.daal.algorithms.classifier.prediction.PredictionResultId;
import com.intel.daal.algorithms.classifier.quality_metric.multi_class_confusion_matrix.*;
import com.intel.daal.algorithms.classifier.training.InputId;
import com.intel.daal.algorithms.classifier.training.TrainingResultId;
import com.intel.daal.algorithms.multi_class_classifier.Model;
import com.intel.daal.algorithms.multi_class_classifier.prediction.*;
import com.intel.daal.algorithms.multi_class_classifier.quality_metric_set.*;
import com.intel.daal.algorithms.multi_class_classifier.training.*;
import com.intel.daal.data_management.data.NumericTable;
import com.intel.daal.data_management.data.HomogenNumericTable;
import com.intel.daal.data_management.data.MergedNumericTable;
import com.intel.daal.data_management.data_source.DataSource;
import com.intel.daal.data_management.data_source.FileDataSource;
import com.intel.daal.examples.utils.Service;
import com.intel.daal.services.DaalContext;
class SVMMulticlassQualityMetricSetBatchExample {
private static final String trainDatasetFileName = "../data/batch/svm_multi_class_train_dense.csv";
private static final String testDatasetFileName = "../data/batch/svm_multi_class_test_dense.csv";
private static final int nFeatures = 20;
private static final int nClasses = 5;
private static TrainingResult trainingResult;
private static PredictionResult predictionResult;
private static ResultCollection qualityMetricSetResult;
private static NumericTable groundTruthLabels;
private static NumericTable predictedLabels;
private static DaalContext context = new DaalContext();
public static void main(String[] args) throws java.io.FileNotFoundException, java.io.IOException {
trainModel();
testModel();
testModelQuality();
printResults();
context.dispose();
}
private static void trainModel() {
com.intel.daal.algorithms.svm.training.TrainingBatch training = new com.intel.daal.algorithms.svm.training.TrainingBatch(
context, Double.class, com.intel.daal.algorithms.svm.training.TrainingMethod.boser);
com.intel.daal.algorithms.svm.prediction.PredictionBatch prediction = new com.intel.daal.algorithms.svm.prediction.PredictionBatch(
context, Double.class, com.intel.daal.algorithms.svm.prediction.PredictionMethod.defaultDense);
FileDataSource trainDataSource = new FileDataSource(context, trainDatasetFileName,
DataSource.DictionaryCreationFlag.DoDictionaryFromContext,
DataSource.NumericTableAllocationFlag.NotAllocateNumericTable);
NumericTable trainData = new HomogenNumericTable(context, Double.class, nFeatures, 0, NumericTable.AllocationFlag.NotAllocate);
NumericTable trainGroundTruth = new HomogenNumericTable(context, Double.class, 1, 0, NumericTable.AllocationFlag.NotAllocate);
MergedNumericTable mergedData = new MergedNumericTable(context);
mergedData.addNumericTable(trainData);
mergedData.addNumericTable(trainGroundTruth);
trainDataSource.loadDataBlock(mergedData);
TrainingBatch algorithm = new TrainingBatch(context, Double.class, TrainingMethod.oneAgainstOne);
algorithm.parameter.setNClasses(nClasses);
algorithm.parameter.setTraining(training);
algorithm.parameter.setPrediction(prediction);
algorithm.input.set(InputId.data, trainData);
algorithm.input.set(InputId.labels, trainGroundTruth);
trainingResult = algorithm.compute();
}
private static void testModel() {
com.intel.daal.algorithms.svm.training.TrainingBatch training = new com.intel.daal.algorithms.svm.training.TrainingBatch(
context, Double.class, com.intel.daal.algorithms.svm.training.TrainingMethod.boser);
com.intel.daal.algorithms.svm.prediction.PredictionBatch prediction = new com.intel.daal.algorithms.svm.prediction.PredictionBatch(
context, Double.class, com.intel.daal.algorithms.svm.prediction.PredictionMethod.defaultDense);
FileDataSource testDataSource = new FileDataSource(context, testDatasetFileName,
DataSource.DictionaryCreationFlag.DoDictionaryFromContext,
DataSource.NumericTableAllocationFlag.NotAllocateNumericTable);
NumericTable testData = new HomogenNumericTable(context, Double.class, nFeatures, 0, NumericTable.AllocationFlag.NotAllocate);
groundTruthLabels = new HomogenNumericTable(context, Double.class, 1, 0, NumericTable.AllocationFlag.NotAllocate);
MergedNumericTable mergedData = new MergedNumericTable(context);
mergedData.addNumericTable(testData);
mergedData.addNumericTable(groundTruthLabels);
testDataSource.loadDataBlock(mergedData);
PredictionBatch algorithm = new PredictionBatch(context, Double.class, PredictionMethod.multiClassClassifierWu);
algorithm.parameter.setNClasses(nClasses);
algorithm.parameter.setTraining(training);
algorithm.parameter.setPrediction(prediction);
Model model = trainingResult.get(TrainingResultId.model);
algorithm.input.set(NumericTableInputId.data, testData);
algorithm.input.set(ModelInputId.model, model);
predictionResult = algorithm.compute();
}
private static void testModelQuality() {
predictedLabels = predictionResult.get(PredictionResultId.prediction);
QualityMetricSetBatch quality_metric_set = new QualityMetricSetBatch(context, nClasses);
MultiClassConfusionMatrixInput input = quality_metric_set.getInputDataCollection()
.getInput(QualityMetricId.confusionMatrix);
input.set(MultiClassConfusionMatrixInputId.predictedLabels, predictedLabels);
input.set(MultiClassConfusionMatrixInputId.groundTruthLabels, groundTruthLabels);
qualityMetricSetResult = quality_metric_set.compute();
}
private static void printResults() {
Service.printClassificationResult(groundTruthLabels, predictedLabels, "Ground truth", "Classification results",
"Multi-class SVM classification results (first 20 observations):", 20);
MultiClassConfusionMatrixResult qualityMetricResult = qualityMetricSetResult
.getResult(QualityMetricId.confusionMatrix);
NumericTable confusionMatrix = qualityMetricResult.get(MultiClassConfusionMatrixResultId.confusionMatrix);
NumericTable multiClassMetrics = qualityMetricResult.get(MultiClassConfusionMatrixResultId.multiClassMetrics);
Service.printNumericTable("Confusion matrix:", confusionMatrix);
DoubleBuffer qualityMetricsData = DoubleBuffer
.allocate((int) (multiClassMetrics.getNumberOfColumns() * multiClassMetrics.getNumberOfRows()));
qualityMetricsData = multiClassMetrics.getBlockOfRows(0, multiClassMetrics.getNumberOfRows(),
qualityMetricsData);
System.out
.println("Average accuracy: " + qualityMetricsData.get(MultiClassMetricId.averageAccuracy.getValue()));
System.out.println("Error rate: " + qualityMetricsData.get(MultiClassMetricId.errorRate.getValue()));
System.out.println("Micro precision: " + qualityMetricsData.get(MultiClassMetricId.microPrecision.getValue()));
System.out.println("Micro recall: " + qualityMetricsData.get(MultiClassMetricId.microRecall.getValue()));
System.out.println("Micro F-score: " + qualityMetricsData.get(MultiClassMetricId.microFscore.getValue()));
System.out.println("Macro precision: " + qualityMetricsData.get(MultiClassMetricId.macroPrecision.getValue()));
System.out.println("Macro recall: " + qualityMetricsData.get(MultiClassMetricId.macroRecall.getValue()));
System.out.println("Macro F-score: " + qualityMetricsData.get(MultiClassMetricId.macroFscore.getValue()));
}
}