Java* API Reference for Intel® Data Analytics Acceleration Library 2016 Update 4

SVMTwoClassCSRBatch.java

/* file: SVMTwoClassCSRBatch.java */
/*******************************************************************************
* Copyright 2014-2016 Intel Corporation All Rights Reserved.
*
* The source code, information and material ("Material") contained herein is
* owned by Intel Corporation or its suppliers or licensors, and title to such
* Material remains with Intel Corporation or its suppliers or licensors. The
* Material contains proprietary information of Intel or its suppliers and
* licensors. The Material is protected by worldwide copyright laws and treaty
* provisions. No part of the Material may be used, copied, reproduced,
* modified, published, uploaded, posted, transmitted, distributed or disclosed
* in any way without Intel's prior express written permission. No license under
* any patent, copyright or other intellectual property rights in the Material
* is granted to or conferred upon you, either expressly, by implication,
* inducement, estoppel or otherwise. Any license under such intellectual
* property rights must be express and approved by Intel in writing.
*
* Unless otherwise agreed by Intel in writing, you may not remove or alter this
* notice or any other notice embedded in Materials by Intel or Intel's
* suppliers or licensors in any way.
*******************************************************************************/
/*
// Content:
// Java example of two-class support vector machine (SVM) classification
//
// The program trains the SVM model on a supplied training data set
// in compressed sparse rows (CSR) format and then performs classification
// of previously unseen data.
*/
package com.intel.daal.examples.svm;
import com.intel.daal.algorithms.classifier.prediction.*;
import com.intel.daal.algorithms.classifier.training.InputId;
import com.intel.daal.algorithms.classifier.training.TrainingResultId;
import com.intel.daal.algorithms.svm.Model;
import com.intel.daal.algorithms.svm.prediction.PredictionBatch;
import com.intel.daal.algorithms.svm.prediction.PredictionMethod;
import com.intel.daal.algorithms.svm.training.*;
import com.intel.daal.data_management.data.NumericTable;
import com.intel.daal.data_management.data.HomogenNumericTable;
import com.intel.daal.data_management.data.CSRNumericTable;
import com.intel.daal.data_management.data_source.DataSource;
import com.intel.daal.data_management.data_source.FileDataSource;
import com.intel.daal.examples.utils.Service;
import com.intel.daal.services.DaalContext;
class SVMTwoClassCSRBatch {
/* Input data set parameters */
private static final String trainDatasetFileName = "../data/batch/svm_two_class_train_csr.csv";
private static final String trainGroundTruthFileName = "../data/batch/svm_two_class_train_labels.csv";
private static final String testDatasetFileName = "../data/batch/svm_two_class_test_csr.csv";
private static final String testGroundTruthFileName = "../data/batch/svm_two_class_test_labels.csv";
private static TrainingResult trainingResult;
private static PredictionResult predictionResult;
private static DaalContext context = new DaalContext();
public static void main(String[] args) throws java.io.FileNotFoundException, java.io.IOException {
trainModel();
testModel();
printResults();
context.dispose();
}
private static void trainModel() throws java.io.IOException {
/* Retrieve the data from input data sets */
FileDataSource trainGroundTruthSource = new FileDataSource(context, trainGroundTruthFileName,
DataSource.DictionaryCreationFlag.DoDictionaryFromContext,
DataSource.NumericTableAllocationFlag.DoAllocateNumericTable);
/* Load the data from the data files */
NumericTable trainData = Service.createSparseTable(context, trainDatasetFileName);
trainGroundTruthSource.loadDataBlock();
/* Create algorithm objects to train the two-class SVM model */
TrainingBatch algorithm = new TrainingBatch(context, Double.class, TrainingMethod.boser);
/* Set parameters for the two-class SVM algorithm */
algorithm.parameter.setCacheSize(40000000);
algorithm.parameter.setKernel(
new com.intel.daal.algorithms.kernel_function.linear.Batch(
context, Double.class, com.intel.daal.algorithms.kernel_function.linear.Method.fastCSR));
/* Pass a training data set and dependent values to the algorithm */
algorithm.input.set(InputId.data, trainData);
algorithm.input.set(InputId.labels, trainGroundTruthSource.getNumericTable());
/* Train the two-class SVM model */
trainingResult = algorithm.compute();
}
private static void testModel() throws java.io.IOException {
/* Create Numeric Tables for testing data and labels */
NumericTable testData = Service.createSparseTable(context, testDatasetFileName);
/* Create algorithm objects to predict two-class SVM values with the defaultDense method */
PredictionBatch algorithm = new PredictionBatch(context, Double.class, PredictionMethod.defaultDense);
algorithm.parameter.setKernel(
new com.intel.daal.algorithms.kernel_function.linear.Batch(
context, Double.class, com.intel.daal.algorithms.kernel_function.linear.Method.fastCSR));
Model model = trainingResult.get(TrainingResultId.model);
/* Pass a testing data set and the trained model to the algorithm */
algorithm.input.set(NumericTableInputId.data, testData);
algorithm.input.set(ModelInputId.model, model);
/* Compute the prediction results */
predictionResult = algorithm.compute();
}
private static void printResults() {
FileDataSource testGroundTruthSource = new FileDataSource(context, testGroundTruthFileName,
DataSource.DictionaryCreationFlag.DoDictionaryFromContext,
DataSource.NumericTableAllocationFlag.DoAllocateNumericTable);
testGroundTruthSource.loadDataBlock();
NumericTable testGroundTruth = testGroundTruthSource.getNumericTable();
NumericTable predictionResults = predictionResult.get(PredictionResultId.prediction);
Service.printClassificationResult(testGroundTruth, predictionResults, "Ground truth", "Classification results",
"SVM classification results (first 20 observations):", 20);
}
}