Java* API Reference for Intel® Data Analytics Acceleration Library 2016 Update 4

SVMTwoClassDenseBatch.java

/* file: SVMTwoClassDenseBatch.java */
/*******************************************************************************
* Copyright 2014-2016 Intel Corporation All Rights Reserved.
*
* The source code, information and material ("Material") contained herein is
* owned by Intel Corporation or its suppliers or licensors, and title to such
* Material remains with Intel Corporation or its suppliers or licensors. The
* Material contains proprietary information of Intel or its suppliers and
* licensors. The Material is protected by worldwide copyright laws and treaty
* provisions. No part of the Material may be used, copied, reproduced,
* modified, published, uploaded, posted, transmitted, distributed or disclosed
* in any way without Intel's prior express written permission. No license under
* any patent, copyright or other intellectual property rights in the Material
* is granted to or conferred upon you, either expressly, by implication,
* inducement, estoppel or otherwise. Any license under such intellectual
* property rights must be express and approved by Intel in writing.
*
* Unless otherwise agreed by Intel in writing, you may not remove or alter this
* notice or any other notice embedded in Materials by Intel or Intel's
* suppliers or licensors in any way.
*******************************************************************************/
/*
// Content:
// Java example of two-class support vector machine (SVM) classification
//
// The program trains the SVM model on a supplied training data set
// in dense format and then performs classification of previously unseen
// data.
*/
package com.intel.daal.examples.svm;
import com.intel.daal.algorithms.classifier.prediction.*;
import com.intel.daal.algorithms.classifier.training.InputId;
import com.intel.daal.algorithms.classifier.training.TrainingResultId;
import com.intel.daal.algorithms.svm.Model;
import com.intel.daal.algorithms.svm.prediction.PredictionBatch;
import com.intel.daal.algorithms.svm.prediction.PredictionMethod;
import com.intel.daal.algorithms.svm.training.TrainingBatch;
import com.intel.daal.algorithms.svm.training.TrainingMethod;
import com.intel.daal.algorithms.svm.training.TrainingResult;
import com.intel.daal.data_management.data.NumericTable;
import com.intel.daal.data_management.data.HomogenNumericTable;
import com.intel.daal.data_management.data.MergedNumericTable;
import com.intel.daal.data_management.data_source.DataSource;
import com.intel.daal.data_management.data_source.FileDataSource;
import com.intel.daal.examples.utils.Service;
import com.intel.daal.services.DaalContext;
class SVMTwoClassDenseBatch {
/* Input data set parameters */
private static final String trainDatasetFileName = "../data/batch/svm_two_class_train_dense.csv";
private static final String testDatasetFileName = "../data/batch/svm_two_class_test_dense.csv";
private static final int nFeatures = 20;
private static TrainingResult trainingResult;
private static PredictionResult predictionResult;
private static NumericTable testGroundTruth;
private static DaalContext context = new DaalContext();
public static void main(String[] args) throws java.io.FileNotFoundException, java.io.IOException {
trainModel();
testModel();
printResults();
context.dispose();
}
private static void trainModel() {
/* Retrieve the data from input data sets */
FileDataSource trainDataSource = new FileDataSource(context, trainDatasetFileName,
DataSource.DictionaryCreationFlag.DoDictionaryFromContext,
DataSource.NumericTableAllocationFlag.NotAllocateNumericTable);
/* Create Numeric Tables for training data and labels */
NumericTable trainData = new HomogenNumericTable(context, Double.class, nFeatures, 0, NumericTable.AllocationFlag.NotAllocate);
NumericTable trainGroundTruth = new HomogenNumericTable(context, Double.class, 1, 0, NumericTable.AllocationFlag.NotAllocate);
MergedNumericTable mergedData = new MergedNumericTable(context);
mergedData.addNumericTable(trainData);
mergedData.addNumericTable(trainGroundTruth);
/* Retrieve the data from an input file */
trainDataSource.loadDataBlock(mergedData);
/* Create algorithm objects to train the two-class SVM model */
TrainingBatch algorithm = new TrainingBatch(context, Double.class, TrainingMethod.boser);
/* Set parameters for the two-class SVM algorithm */
algorithm.parameter.setCacheSize(40000000);
algorithm.parameter
.setKernel(new com.intel.daal.algorithms.kernel_function.linear.Batch(context, Double.class));
/* Pass a training data set and dependent values to the algorithm */
algorithm.input.set(InputId.data, trainData);
algorithm.input.set(InputId.labels, trainGroundTruth);
/* Train the two-class SVM model */
trainingResult = algorithm.compute();
}
private static void testModel() {
FileDataSource testDataSource = new FileDataSource(context, testDatasetFileName,
DataSource.DictionaryCreationFlag.DoDictionaryFromContext,
DataSource.NumericTableAllocationFlag.NotAllocateNumericTable);
/* Create Numeric Tables for testing data and labels */
NumericTable testData = new HomogenNumericTable(context, Double.class, nFeatures, 0, NumericTable.AllocationFlag.NotAllocate);
testGroundTruth = new HomogenNumericTable(context, Double.class, 1, 0, NumericTable.AllocationFlag.NotAllocate);
MergedNumericTable mergedData = new MergedNumericTable(context);
mergedData.addNumericTable(testData);
mergedData.addNumericTable(testGroundTruth);
/* Retrieve the data from an input file */
testDataSource.loadDataBlock(mergedData);
/* Create algorithm objects to predict two-class SVM values with the defaultDense method */
PredictionBatch algorithm = new PredictionBatch(context, Double.class, PredictionMethod.defaultDense);
algorithm.parameter
.setKernel(new com.intel.daal.algorithms.kernel_function.linear.Batch(context, Double.class));
Model model = trainingResult.get(TrainingResultId.model);
/* Pass a testing data set and the trained model to the algorithm */
algorithm.input.set(NumericTableInputId.data, testData);
algorithm.input.set(ModelInputId.model, model);
/* Compute the prediction results */
predictionResult = algorithm.compute();
}
private static void printResults() {
NumericTable predictionResults = predictionResult.get(PredictionResultId.prediction);
Service.printClassificationResult(testGroundTruth, predictionResults, "Ground truth", "Classification results",
"SVM classification results (first 20 observations):", 20);
}
}