Developer Guide for Intel® Data Analytics Acceleration Library 2016 Update 4
This mode assumes that the data set is split into nblocks blocks across computation nodes.
The low order moments algorithm in the distributed processing mode has the following parameters:
Parameter |
Default Value |
Description |
|
---|---|---|---|
computeStep |
Not applicable |
The parameter required to initialize the algorithm. Can be:
|
|
algorithmFPType |
double |
The floating-point type that the algorithm uses for intermediate computations. Can be float or double. |
|
method |
defaultDense |
Available methods for computation of low order moments:
|
Computation of low order moments follows the general schema described in Algorithms:
In this step, the low order moments algorithm accepts the input described below. Pass the Input ID as a parameter to the methods that provide input for your algorithm. For more details, see Algorithms.
Input ID |
Input |
|
---|---|---|
data |
Pointer to the ni x p numeric table that represents the i-th data block on the local node. While the input for defaultDense, singlePassDense, or sumDense method can be an object of any class derived from NumericTable, the input for fastCSR, singlePassCSR, or sumCSR method can only be an object of the CSRNumericTable class. |
In this step, the low order moments algorithm calculates the results described below. Pass the Result ID as a parameter to the methods that access the results of your algorithm. For more details, see Algorithms.
Result ID |
Result |
|
---|---|---|
nObservations |
Pointer 1 x 1 numeric table that contains the number of observations processed so far on the local node. By default, this result is an object of the HomogenNumericTable class, but you can define the result as an object of any class derived from NumericTable except CSRNumericTable. |
|
Partial characteristics computed so far on the local node, each in a 1 x p numeric table. By default, each table is an object of the HomogenNumericTable class, but you can define the tables as objects of any class derived from NumericTable except PackedSymmetricMatrix, PackedTriangularMatrix, and CSRNumericTable. |
||
partialMinimum |
Partial minimums. |
|
partialMaximum |
Partial maximums. |
|
partialSum |
Partial sums. |
|
partialSumSquares |
Partial sums of squares. |
|
partialSumSquaresCentered |
Partial sums of squared differences from the means. |
In this step, the low order moments algorithm accepts the input described below. Pass the Input ID as a parameter to the methods that provide input for your algorithm. For more details, see Algorithms.
Input ID |
Input |
|
---|---|---|
partialResults |
A collection that contains numeric tables with partial results computed in Step 1 on local nodes (six numeric tables from each local node). These numeric tables can be objects of any class derived from the NumericTable class except PackedSymmetricMatrix and PackedTriangularMatrix. |
In this step, the low order moments algorithm calculates the results described in the following table. Pass the Result ID as a parameter to the methods that access the results of your algorithm. For more details, see Algorithms.
Each result is a pointer to the 1 x p numeric table that contains characteristics for each feature in the data set. By default, the tables are objects of the HomogenNumericTable class, but you can define each table as an object of any class derived from NumericTable except PackedSymmetricMatrix, PackedTriangularMatrix, and CSRNumericTable.
Result ID |
Characteristic |
|
---|---|---|
minimum |
Minimums. |
|
maximum |
Maximums. |
|
sum |
Sums. |
|
sumSquares |
Sums of squares. |
|
sumSquaresCentered |
Sums of squared differences from the means. |
|
mean |
Estimates for the means. |
|
secondOrderRawMoment |
Estimates for the second order raw moments. |
|
variance |
Estimates for the variances. |
|
standardDeviation |
Estimates for the standard deviations. |
|
variation |
Estimates for the variations. |
Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804 |